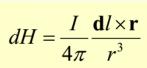
*Capítulo 2: Definições e diamangnetismo

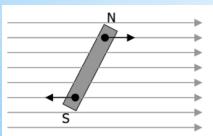

Prof. J. A. H. Coaquira

*Campos magnéticos

Campo Magnético: campo de forças produzido por cargas em movimento (correntes)

Duas grandezas relacionadas:

H intensidade de campo magnético corrente elétrica (I) num condutor (Lei de Biot-Savart)


H independe do meio

SI	CGS				
[H]=[Am ² /m ³]	[H]=[Oe]				
=[A/m]	1Oe =10³/4π A/m				

B indução magnética ou campo magnético (Depende do meio, resposta do meio)

Sempre que for gerado um H por uma corrente l

- *O meio responde com o aparecimento de uma força (força de Lorentz)
- * Torque

*Campos magnéticos

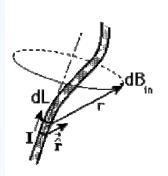
Unidades de B

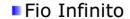
F= <i>q</i> v × B → força de Lorentz							
SI	CGS						
[N]=[C][m/s][B]	[B]=[G]						
[B]=[N][C] ⁻¹ [m/s] ⁻¹	1G=10 ⁻⁴ T						
[B]=[N][Am]=[T]							

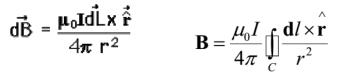
relação entre B e H

$$\mathbf{B}=\mu_0\mathbf{H}$$

$$\mu_0=4\pi\times10^{-7}\,\mathrm{Hm^{-1}}$$
 Permeabilidade do vácuo

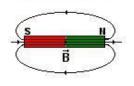

Mesmo campo magnetizante (unidades diferentes)

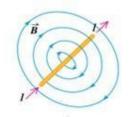

Como gerar um campo magnético?

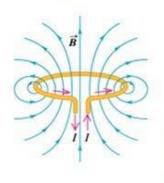

- 1) Correntes macroscópicas em um fio condutor.
- 2) Correntes microscópicas associadas a elétrons em orbitais atômicos.

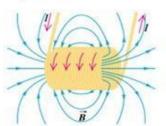
*Campo magnético

■ Fio Condutor: Biot-Savart

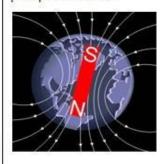



Campo magnético gerado por um íman em barra

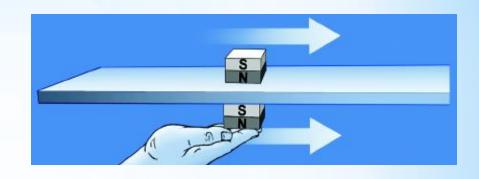

Campo magnético gerado por um íman em U


Campo magnético gerado por um fio rectilíneo

Campo magnético gerado por uma espira.



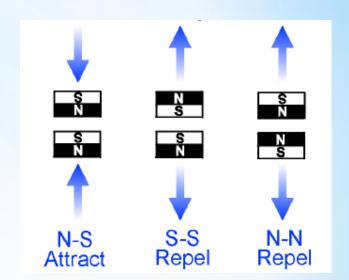
Campo magnético gerado por um solenóide.


nota: no interior do solenóide as linhas de campo são rectilíneas e paralelas.

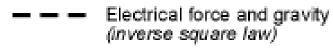
Campo magnético gerado pelo planeta Terra

*Propriedades dois imas

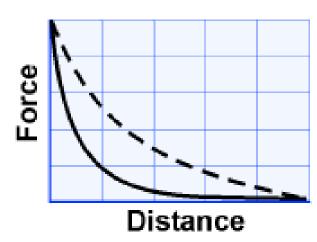
*Plasticos, madeira e a maioria dos materiais isolantes sao transparentes a forcas magneticas.



*Metais condutores como o aluminio tambem permitem a passagem das forcas magneticas, mas podem alterar as forcas.

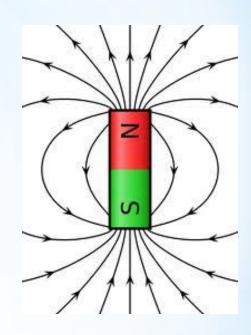

*Forca magnetica

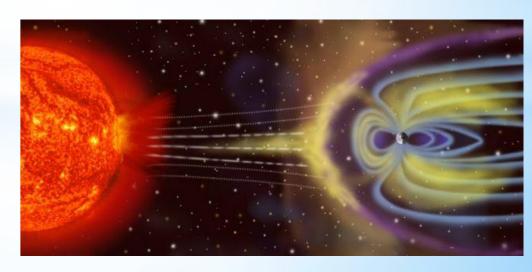
- *Imãs exercem forças entre si.
- *As forças dependem do alinhamento dos pólos.


- *A intensidade da força entre imãs depende da distância entre eles.
- *A força magnética decresce com a distância muito mais rápido que a força da gravidade ou elétrica.

Comparing force vs. distance

*Momento magnético


* momento magnético $\vec{\mu}$ é definido:


$$\vec{\mu} = \frac{1}{2} \int \vec{r}' \times \vec{J}(\vec{r}') d^3r'$$

*Neste caso, o campo magnético é dado por:

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \left[\frac{3(\vec{\mu}.\vec{r})}{r^5} \vec{r} - \frac{\vec{\mu}}{r^3} \right]$$

Campo magnético dipolar!

Momento magnético

Origem do momento magnético atômico:

 $\mu = I \cdot A$

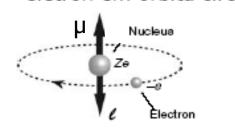
- movimento orbital do elétron em torno do núcleo
- movimento de spin do elétron
- Clássico: μ → corrente fluindo em um circuito fechado $\begin{cases} -\text{ correntes convencionais} \\ -\text{ elétron em órbita} \end{cases}$

Table 3.1. Properties of the electron

Spin magnetic moment m $-9.285 \times 10^{-24} \text{ A m}^2$

Classical radius $\mu_0 e^2 / 4\pi m_e$ r_e 2.818 × 10⁻¹⁵ m

 $m_e = 9.109 \times 10^{-31} \text{ kg}$


 $\frac{1}{2}\hbar$ 5.273 × 10⁻³⁴ J s

2.0023

-e -1.6022×10^{-19} C

Modelo de Bohr

elétron em órbita circular

$$A = \pi r^2$$

$$v = \omega/2\pi$$

$$I = q. t^{-1} = -e \cdot \omega / 2\pi$$

com momento angular orbital:

$$\underline{L} = m_e \underline{v} \times \underline{r} \rightarrow L = m_e \omega \cdot r^2$$

Momento magnético orbital será:

$$\mu_{\text{orb}} = I \cdot A = -\frac{1}{2} \cdot e \cdot \omega \cdot r^2$$

$$\underline{\mu}_{\text{orb}} = - (e / 2m_e) \cdot \underline{L}$$

Mass

Charge

Spin g-factor

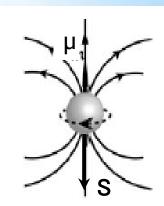
Spin quantum number

Spin angular momentum

antiparalelos

razão giromagnética

- L: valores discretos → L = n · ħ, onde n = 1, 2, 3, 4, ...
- Logo μ _{orb} é quantizado


$$\mu_{\text{orb}} = \hbar e/2m_e$$
 $\mu_B = 9.27 \cdot 10^{-24} \text{ Am}^2$
magneton de Bohr
unidade fundamental do magnetismo

Momento magnetico

Movimento de spin do elétron → momento magnético de spin μ_s

$$\mu_S = -(e/m)S$$
 onde $S = \hbar \cdot s$ e $s = \pm 1/2$

$$S=\hbar \cdot s$$
 e

Note: contribuição de spin 2X maior do que contribuição angular

Momento magnético total:

$$\underline{\mu}_T = \underline{\mu}_{orb} + \underline{\mu}_{S}$$

$$\underline{\mu}_T = -(e/2m)\underline{L} - (e/2m)2\underline{S}$$

$$\underline{\mu_T} = -g (e/2m) \underline{J}$$

$$\begin{cases} \underline{J} = \text{momento ang. total} \\ \underline{g} = \text{fator giromagnético} \end{cases}$$

g : fator de Landé

$$1 \le g \le 2$$

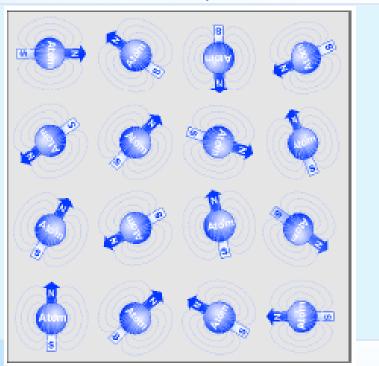
$$\begin{cases} g = 1 \text{ somente orbital} \\ g = 2 \text{ somente spin} \end{cases}$$

Podemos escrever:

$$\mu_T = -g (e/2m) J$$

$$= -g (e\hbar/2m) j; J = \hbar j$$

$$= -g \mu_B j$$


<u>onde j é sempre semi-inteiro</u>

$$\mu_T = -g \mu_B j$$

*Magnetização

*Seja o momento magnético de um átomo $\vec{\mu}_i$, a magnetização de um conjunto de N átomos contidos num volume V é definida como

$$\overrightarrow{M} = \frac{\sum \overrightarrow{\mu}_i}{V}$$

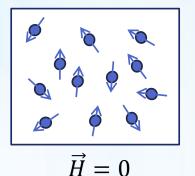
*Campos magnéticos

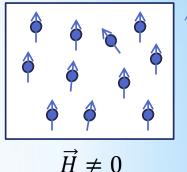
Grandezas magnéticas

- *B é a indução magnética, campo magnético ou densidade do fluxo magnético.
- *H é a intensidade magnética.
- *M é a magnetização do meio

A relação entre eles

$$\vec{B} = \mu_0(\vec{H} + \vec{M})$$


No vácuo, quando M=0 (sem a presença de matéria)


$$\vec{B} = \mu_0 \vec{H}$$

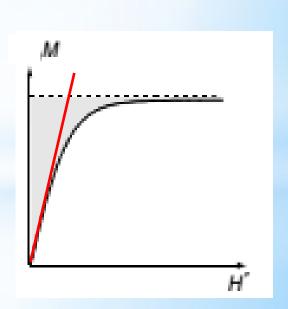
onde $\mu_0/4\pi=10^{-7}$ H/m, permeabilidade no vácuo. B e H referem-se ao mesmo campo magnetizante.

*Susceptibilidade

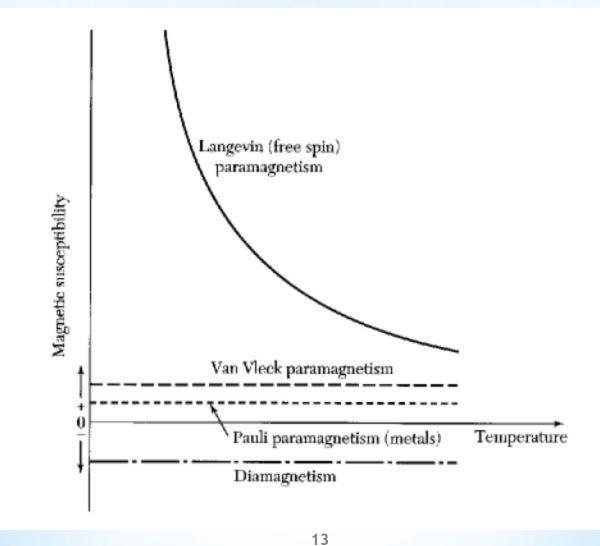
*Para a grande maioria dos materiais, a magnetização é proporcional ao campo magnético aplicado (campos baixos).

$$\chi = \frac{M}{H}$$

No sistema internacional de unidades (SI), como


$$\vec{H} = \vec{B}/\mu_0 - \vec{M}$$
, χ é adimensional.

*Na prática é mais conveniente introduzir a susceptibilidade molar


$$\chi_{mol} = \chi V_{mol}$$
 [χ_{mol}]=m³/ mol

*Susceptibilidade mássica: $[\chi_m]$ =m³/kg

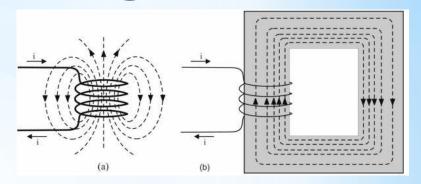
$$\chi_m = \chi/\rho$$

*Susceptibilidade

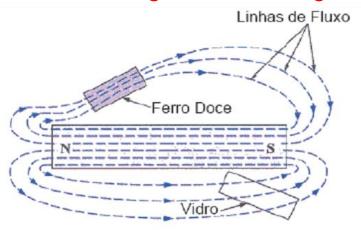
Permeabilidade magnetica

- □A permeabilidade magnética mede a capacidade de um material em "aceitar" linhas de indução em seu interior.
- ☐ Quanto maior for a permeabilidade de um material, mais linhas de indução em seu interior.
- ☐ Conceito similar à condutividade elétrica de um

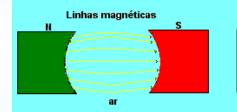
$$\boxed{\frac{B}{H} = \mu_0 \left(1 + \frac{M}{H} \right)}$$


Sabendo que $\chi = \frac{M}{H}$,

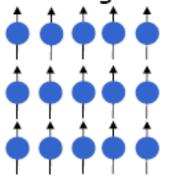
A permeabilidade é:

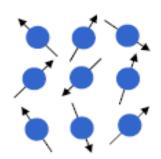

$$\mu = \frac{B}{H}$$

Então

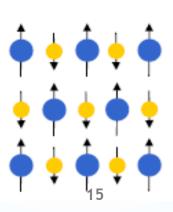

 $\mu = \mu_0 (1 + \chi)$ ou $\mu_r = \frac{\mu}{\mu_0} = 1 + \chi$ (permeabilidade relativa)

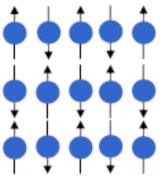
Distribuição das linhas de campo na proximidade de um material magnético e não magnético!


Efeito da alta permeabilidade do ferro na blindagem magnética.



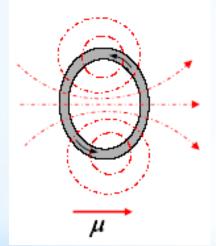
Materiais magnéticos

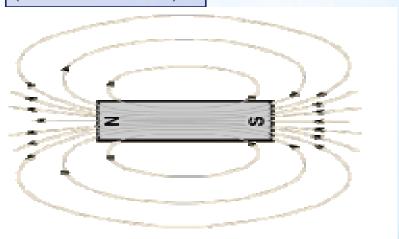

- Origem dos momentos magnéticos
- Tipo de interação entre os momentos
 - Magnetismo Fraco
 - Diamagnetos
 - Paramagnetos
 - Magnetismo Forte
 - Materiais Ordenados:
 - Ferromagnetos



Ferrimagnetos

Antiferromagnetos

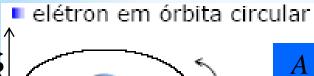




*Piamagnetismo

*Materiais diamagneticos não possuem momento magnetico permanente

Origem: variação do momento orbital dos elétrons induzida pela ação de um campo magnético (Lei de Lenz)



*Resposta se opõe ao campo
$$\rightarrow \chi = \frac{M}{H} < 0$$
 (\approx -10⁻⁶ MUITO PEQUENO)

*Todo material apresenta diamagnetismo

DIAMAGNETISMO: DESCRIÇÃO CLASSICA

$$A = \pi a^2$$

$$v = \omega / 2\pi$$

*Corrente equivalente

$$I = ev = e\omega/2\pi$$

*Momento magnético

$$\mu = IA = e\omega a^2 / 2$$

*Orbitando sob a força central

$$F = m_e \omega^2 a$$

*Se aplicamos um campo magnetico na direcao z. A força de Lorentz aparece

$$F_L = e \upsilon B = e \omega a B$$

* Assumindo que o movimento nao muda o raio a, teremos

$$F - F_L = m_e \omega^2 a$$

Do modo que

$$m_e \omega^2 a - e \omega a B = m_e \omega^2 a$$

$$\omega'^2 - \omega^2 = -\frac{e\omega B}{m_a}$$

DIAMAGNETISMO: DESCRICAO CLASSICA

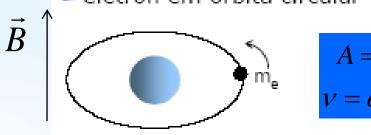
*Se a $\Delta\omega = \omega' - \omega$ for pequena

$$\omega'^2 - \omega^2 \approx 2\omega \Delta \omega$$

*entao

$$\Delta\omega = -\frac{eB}{2m_e}$$

Onde $\frac{eB/2m_e}{}$ e a frequencia de Larmor


*Substituindo em

$$\mu = IA = e\omega a^2 / 2$$

Percebemos uma mudança no momento magnético

$$\Delta\mu = -\frac{e^2a^2}{4m_e}B$$

elétron em órbita circular

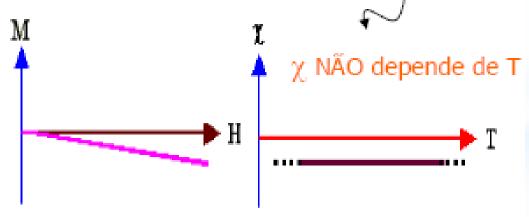
*Lembrando que a é o raio da orbita perpendicular a B.

Para uma distribuição esfericamente simetrica, temos

$$a^{2} = \langle x^{2} \rangle + \langle y^{2} \rangle = \frac{2}{3} \left[\langle x^{2} \rangle + \langle y^{2} \rangle + \langle z^{2} \rangle \right] = \frac{2}{3} \langle r^{2} \rangle$$

então

$$\Delta \mu = -\frac{e^2 \langle r^2 \rangle}{6m_e} B$$


DIAMAGNETISMO: DESCRICAO CLASSICA

*Para N atomos por unidade de volume e Z elétrons por átomo, temos

$$M = NZ\Delta\mu$$

*Então

$$\chi = \frac{M}{H} = \mu_0 \frac{M}{B} = -\frac{\mu_0 N Z e^2}{6m_e} \langle r^2 \rangle$$

- *Caracteristicas:
- Negativa
- Independente da temperatura
- Sempre presente mesmo quando nao ha momentos permanentes nos átomos.

Diamagnetismo

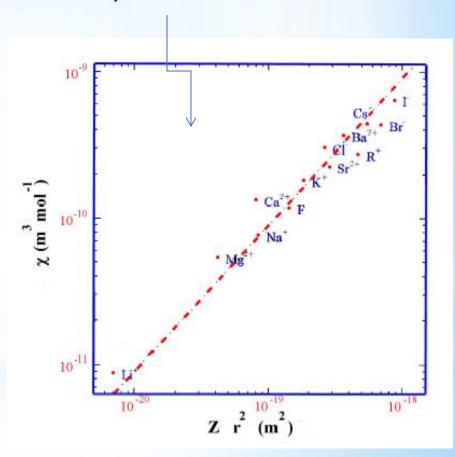
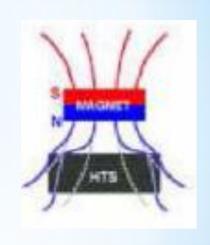

Valores absolutos

Table 3.2. Diamagnetic susceptibilities χ_m of common ions. Units are 10^{-9} m³ kg⁻¹(after Sellwood, 1956)

H ⁺	0	Be^{2+}		Sc^{3+}		C^{4+}	0.1	F-	7.2
Li ⁺	1.1	Mg^{2+}	1.6	Y^{3+}	1.8	Si ⁴⁺	0.4	OH-	8.8
Na ⁺	2.7	Ca ²⁺	2.5	La ³⁺	1.8	Ge ⁴⁺	1.2	Cl-	9.2
K ⁺		Sr ²⁺	2.1	Lu ³⁺	1.2	Sn ⁴⁺	1.7	Br-	5.6
Rb ⁺	2.9	Ba ²⁺	2.9			Pb ⁴⁺	1.4	I-	5.1
Cs ⁺	2.9			B_{3+}	0.2				
Cu+		Zn^{2+}		Al^{3+}	0.9			O^{2-}	9.4
Ag ⁺		Cd ²⁺		Ga ³⁺	1.4	Zr^{4+}	1.4	S^{2-}	14.8
Au+	2.5	Hg^{2+}	2.3	In ³⁺	2.1		1.1	Se ²⁻	7.6
NH_4^+	8.0	Pb ²⁺	1.7			U_{6+}	1.0	Te ²⁻	6.8

Pyrreme


*Os valores do raio atômico podem ser calculados!

*Piamagnetismo

Aplicação: Levitação magnética

